Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Read::
- Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges M.M. Bronstein, J. Bruna, T. Cohen, P. VeliÄkoviÄ 2021 š« NA reading citation Print:: ā Zotero Link:: NA PDF:: NA Files:: arXiv.org Snapshot; Bronstein et al_2021_Geometric Deep Learning.pdf
Files:: arXiv.org Snapshot; Bronstein et al_2021_Geometric Deep Learning.pdf Reading Note:: M.M. Bronstein, J. Bruna, T. Cohen, P. VeliÄkoviÄ (2021) Web Rip::
TABLE without id
file.link as "Related Files",
title as "Title",
type as "type"
FROM "" AND -"ZZ. planning"
WHERE citekey = "bronsteinGeometricDeepLearning2021"
SORT file.cday DESC
> [!Excerpt] Abstract
>
Abstract
The last decade has witnessed an experimental revolution in data science and machine learning, epitomised by deep learning methods. Indeed, many high-dimensional learning tasks previously thought to be beyond reach ā such as computer vision, playing Go, or protein folding ā are in fact feasible with appropriate computational scale. Remarkably, the essence of deep learning is built from two simple algorithmic principles: first, the notion of representation or feature learning, whereby adapted, often hierarchical, features capture the appropriate notion of regularity for each task, and second, learning by local gradient-descent type methods, typically implemented as backpropagation. While learning generic functions in high dimensions is a cursed estimation problem, most tasks of interest are not generic, and come with essential pre-defined regularities arising from the underlying low-dimensionality and structure of the physical world. This text is concerned with exposing these regularities through unified geometric principles that can be applied throughout a wide spectrum of applications. Such a āgeometric unificationā endeavour, in the spirit of Felix Kleinās Erlangen Program, serves a dual purpose: on one hand, it provides a common mathematical framework to study the most successful neural network architectures, such as CNNs, RNNs, GNNs, and Transformers. On the other hand, it gives a constructive procedure to incorporate prior physical knowledge into neural architectures and provide principled way to build future architectures yet to be invented.
Quick Reference
Top Comments
Letās say grey is for overall comments
Topics
Further Reading
ā