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Time mechanisms in neuronal assemblies exhibit complexity-
rich and multi-dimensional dynamics, on which all neuronal 
communication is based. By modeling the simplest properties 
of  neuronal spiking communication, we may be able to create 
emergent properties of  timing and learning in deep and 
entangled assemblies. 

I.e. small, simplistic time-mechanisms such as Spike Timing 
Dependent Plasticity (STDP) may compose more complicated 
modes of  timing in an assembly at scale. Assuming biological 
models are composed of  these self-adjusting mechanisms as a 
means of  adapting in changing environments, learning the 
properties of  time may offer new methods of  credit-assignment 
for online and continuous learning models.

The Striatal Beat Frequency (SBF) model [1], is a 
neuroscientific model for encoding time-separated events in a 
distributed architecture of  sub-circuits. This well-supported 
model provides an explanation for flexible and distributed 
encodings of  time information at multiple scales. The spike-
based communication of  this model allows for implementation 
in SNNs and learning with STDP.  Here, we abstract the model’s 
features into an automata framework for continuous and 
discrete periodicity finding problems.

We adapt the SBF model into a naïve reinforcement learning automata: 

the SBF-Automata (SBF-A), and study the automata’s ability to 
learn and reproduce time intervals and for static and changing 
environments.
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For an environment in which a reward is made available with some periodicity 𝑡𝑅𝑃. 
The automata consists of a block oscillatory units, each of which activate with a 
unique periodic cycle. These oscillatory nodes inform the executive node, which 
checks the environment for reward with a probability based on the weighted 
periodic input from the oscillatory nodes.

When the automata acts on the environment, the weights are updated depending 
on if a reward was discovered. Where the nodes that were active at the time of the 
decision, are increased or decreased in weight, and the opposite is done on the 
inactive nodes. 

Effectively, this acts as an analog Fourier Transform, where the frequency of target 
time period is encoded in the distributed weights of compnent frequencies.

Why?        A key goal of the SBF model is to build an understanding of how 
neural circuits are able to encode timing information in the suprasecond to minutes 
range from the microsecond activity of neurons. Many previous neurological time 
models rely on some dedicated “clock” mechanism as well as “cold storage” memory 
to hold the relevant time information. This schema reflects the Von Neumann style 
architecture found in computing, and poorly reflect the atomically distributed and 
multiplexed nature of information in the brain. 

In contrast, the SBF model uses the intrinsic firing patterns of neural assemblies as the 
mechanism for time interval detection, as well as a opening for the resultant time 
information to be encoded within the state of the network [2]. This proves usable in an 
STDP model [3], and in the plastic regime could allow for compact, robust, and 
scalable properties consistent with those found in time cells [4].

Does it Work?

Receptive Fields & Temporal Rescaling
• The naïve discrete automata method is severely limited in ability as 

the collective node contribution at each timestep is dependent on 
initial phase distributions and their specific effectivity to identifying the 
reward interval. 

• We expanded our model to reflect the phasic activity of time cells, 
giving each oscillator a phasic activation curve. 

• Biological time cells are able to temporally rescale by tuning the 
mean peak and variance of their phase in response to dopaminergic 
feedback while training to a specific interval or towards a broader 
tuning in the face of complex environmental input and reaction [6]. 

• Precession of an oscillator’s phase tuning allows entrainment to 
slower frequency oscillations which reflect changes at a high-
frequency timescale with respect to other encoded time durations, 
allowing for multiplexed and multiscale time encodings [2]. • Precession / recession of the phase can be produced in an STDP 

regime, where spike fire timing of a downstream region can be 
modulated by the firing rate of the upstream neurons and 
dopaminergic reward timing. 

• The latter implementable in a three-factor plasticity model which 
integrates the sum of eligibility traces.
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The SBF-A Model

Algorithm 1 – Normalized Weighted Vote

Our basic algorithm is a simple 
normalized weighted vote that
occurs at every time time-step. 

We extend this with update
rules for punishment, when the
automata acted but no reward
was available, the weight is 
redistributed from active units to 
inactive units.

We add furhter extensions to
our algorithm including Reward
Prediction Error (RPE) based
techniques to further extend the
model’s preformance in 
changing environments.

Oscillatory Phase Distributions
• It is important to find a distribution of oscillator phases which can 

maximally recover reward, with respect to phase of the reward cycle.

• Our initial approach was to use prime numbered phases in order to 
avoid overlap in activity domains.

• 1/𝑓 noise (a power law distribution) can be found in oscillatory 
distributions throughout the brain [5] including in circuits with 
proposed involvement in the SBF model [1]. 

• Additionally, we found the need for an “inhibitory node” which votes 
for “no-action” at every timestep, thus absorbing surplus activity in 
the network. 

• The lossless weight redistribution of the algorithm may force the 
automata to perform unnecessary actions. The addition of the 
no-action oscillator effectivity acts as a broad inhibitory signal, 
optimizing the energy efficiency of the automata.Here we show proof of concept, in which an oscillator period equal to 

the reward period is present. Because SBF-A acts as an analog fourier
transform, the accuracy increases with number of oscillators used [7]. 
With discrete tonic oscillators, accurate performance requires
thousands of oscillators, but with phasic activity oscillators we can
obtain adequate performance with less than a hundred.
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